光学指纹采集器
原理
光学指纹采集器使用时间长,它采集指纹表层纹理图像。手指接触棱镜的表面,发光二级管提供一个光源,图像是通过电荷偶合器件集成电路采集。光学指纹传感器可靠,价格也很便宜,但对脏手指和干手指表面有覆盖物的指纹图像识别率很低,对温度等环境因素的适应能力差。但是由于受光路限制,无畸变型采集器尺寸较大。通常有较严重的光学畸变;采集窗口表面往往有痕迹遗留现象。CCD器件可能因寿命老化,有降低图像质量、假指纹等缺陷。
热敏式传感器
第二个进化阶段是热敏式传感器,指纹表面图像形成的基础是指纹脊和沟随着散发的热量变化而变化的。在一个典型的热敏传感器,一个小型加热元件是直接附属于一套热量传感元件。因为“读取”指纹是第一要素,脊和沟被加热。热量传感元件检测出脊和沟与人工合成指纹复合图像的温度不同。虽然价格便宜,体积小,但相对于其它竞争技术热敏式传感器往往消耗较多的能量,并且在酷热的环境或者是炎热的天气里,图像采集很不清晰。
电容传感器技术是采用了交替命令的并排列和传感器电板。交替板的形式是两个电容板,以及指纹的山谷和山脊成为板之间的电介质。两者之间的恒量电介质的传感器检测变化来生成指纹图像。制造DC电容传感器使用相同的程序和硅材料作为标准的集成电路,从而降低厚度和电源的要求。与热敏式传感器相比,电容技术在更大操作范围内提供了更好的图像质量。因为它的采集范围相对比较大,不过,电容技术的成本比前两种种技术要高。由于电容传感器表面是由电介质材料制作,因此容易损坏,对脏手指灵敏度上不好。
生物射频指纹识别技术
生物射频指纹识别技术,射频传感器技术是通过传感器本身发射出微量射频信号,穿透手指的表皮层去控测里层的纹路,来获得最佳的指纹图像。因此对干手指,汗手指,干手指等困难手指通过可高达99.5%,防伪指纹能力强,指纹敏感器的识别原理只对人的真皮皮肤有反应,从根本上杜绝了人造指纹的问题,宽温区:适合特别寒冷或特别酷热的地区。因为射频传感器产生高质量的图像,因此射频技术是最可靠,最有力有解决方案。除此之外,高质量图像还允许减小传感器,无需牺牲认证的可靠性,从而降低成本并使得射频传感器思想的应用到可移动和大小不受拘束的任何领域中。 射频敏感器:它的工作原理很特殊, 由射频与敏感元件阵列组成, 每一个成员实际上都是一个等效的小天线,它通过人的手指向皮肤内层(真皮层)深处传递电波。接受部分的元件对回传的电波相位进行解调,相位的差别反应了指纹纹理。从某种意义上讲,它的原理与雷达的工作原理相似,所以称为射频式指纹敏感器(RF sensor)。而且,它能自动调节内部电气参数来适应手指干湿程度、按手指压力、年龄、等因素的变化。由于它的独特工作原理, 所采集到的指纹图像对应于手指内层具有生命的真皮指纹纹理,对手指表面的外层皮肤并不直接敏感,并对表面的一些脏物、油渍、灰尘等物质具有穿透能力。它的特殊工作原理使它保证对各种类型的手指在各种使用条件下都能采集到理想的图像,因此具有显著的优越性能。干手指是其它类型敏感器普遍遇到的问题,但是用这款敏感器可以很好地解决这个问题。